
International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

76

Phase-Type Modeling Approaches for Software Reliability Modeling

with Debugging Process

Shinji Inoue

Faculty of Informatics,

Kansai University, Osaka, Japan.

Corresponding author: ino@kansai-u.ac.jp

Shigeru Yamada
Graduate School of Engineering,

Tottori University, Tottori, Japan.

E-mail: yamada@tottori-u.ac.jp

(Received March 21, 2019; Accepted August 29, 2019)

Abstract

Reflecting the software fault debugging procedure or environment of testing activities on software reliability models is

often discussed as the approaches for improving assessment accuracy for model-based reliability assessment. We discuss

a modeling approach reflecting software debugging procedure based on phase-type modeling scheme and propose

probability models for software reliability measurement. Further, we give brief consideration for the usefulness of this

modeling approach by using a few data sets.

Keywords- Software debugging process, Phase-type probability distribution, Software reliability assessment,

Mathematical model.

1. Introduction
For conducting estimation of the failure-free operation probability of software system and other

useful reliability assessment measures, it is known software reliability models (Yamada, 2014) is

utilized practically in reliability assessment of software system. Actually, a lot of discussions on

software reliability modeling by considering actual testing environment for improving the quality

of model-based assessment of software reliability. For examples, discretization of continuous time

models and discretized models, which has been derived by discretizing the continuous-time models,

have been focused as one of the approaches for considering software fault-counting data collection

activities (Inoue and Yamada, 2006). And change-point software reliability modeling approaches

have been proposed by considering the change of testing environment and the influence on

stochastic behavior of reliability growth process during the testing phase (Inoue and Yamada,

2015). Considering other factors, such as software fault debugging process and software

complexity, must be useful for developing more useful software reliability models which enables

us to reliability assessment with increased accuracy (Inoue and Yamada, 2007). Recently, as one

of the approaches for improving the quality of assessment and for yielding unified modeling

scheme, a phase-type modeling approach (Okamura and Dohi, 2016) has been proposed. In this

modeling approach, the perfect fault-correction time follows a phase-type probability distribution

describing the uncertainty of the time to absorption in a CTMC, which is the abbreviation of a

continuous-time Markov chain. It is known several probability distribution functions are described

by considering the counterpart to the absorbing CTMC. However, we need to assume the

appropriate continuous-time Markov chain representing possible situation of software debugging

mailto:yamada@tottori-u.ac.jp

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

77

process when we obtain a software reliability model by following this modeling approach.

This paper gives one of the solutions on applying the phase-type approach for reflecting actual

testing environment in software reliability assessment. That is, we apply this probability

distribution to describing the uncertainty of the fault elimination procedure in the test activities.

Then, we give several discussions on how to apply the phase-type modeling scheme to a software

debugging procedures by considering several types of possible software debugging processes. This

paper is expected to contribute to applying practically the phase-type modeling scheme for

developing useful software reliability models reflecting actual debugging process.

2. Modeling Framework
In our discussion, we assume the following situations for developing a mathematical model in

software reliability assessment (Langberg and Singpurwalla, 1985):

(A1) 𝑍0 (> 0) faults have been introduced before testing. And 𝑍0 (> 0) is a random variable.

(A2) Successive software failure observation and its perfect fault-correction follows an i.i.d.

probability distribution function 𝐺𝑃𝐻(𝑡), which is a phase-type probability distribution

function.

(A3) We do not consider any fault introduction during the debugging process.

From the assumptions above, we formulate the time dependent uncertainty for the number of

detected faults, which is denoted by {𝑍(𝑡), 𝑡 ≥ 0}, as follows:

Pr{𝑍(𝑡) = 𝑘} = ∑ (
𝑛
𝑘

) {𝐺𝑃𝐻(𝑡)}𝑘{1 − 𝐺𝑃𝐻(𝑡)}𝑛−𝑘

𝑛

× Pr {𝑍0 = 𝑛}

 =
{𝜔𝐺𝑃𝐻(𝑡)}𝑘

𝑘!
exp[−𝜔𝐺𝑃𝐻(𝑡)],

 (1)

under the condition that 𝑍0 is a Poisson random variable taking mean 𝜔 (> 0). From Eq. (1), it is

possible to obtain the failure free probability in operation during the time-interval (𝑡, 𝑡 + 𝑥](𝑥 ≥
0), for example.

2. Phase-Type Modeling Approach
The phase-type distribution (Buchholz et al., 2014) describes the uncertainty of the time by

considering an absorbing CTMC. Considering an absorbing CTMC with the set of transient states

𝒮𝑇 = {1, 2, ⋯ , 𝑛} and the absorption 𝒮𝐴 = {𝑛 + 1}, we can characterize the behavior of the

absorbing CTMC by the infinitesimal generator 𝑨 shown as

 𝑨 = (
𝑩𝟎 𝒃𝟏

𝟎 0
). (2)

In Eq. (2), 𝑛 × 𝑛 submatrix 𝑩𝟎 represents the transition rates within the transient states. The

transition rates to the absorption from the transient states are expressed by 𝒃𝟏, 𝑛 × 1 vector. There

is no transition from the absorption by the row vector 𝟎 in Eq. (2). Analyzing the CTMC, we can

formulate the uncertainty of the time to reach the absorption from transient states as

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

78

𝐺𝑃𝐻(𝑡) = Pr{𝑇 ≤ 𝑡}
 = 1 − 𝝅 exp[𝑩𝟎𝒕] 𝟏 (𝑥 ≥ 0).

 (3)

In Eq. (3), 𝝅 is the initial state vector, 𝟏 is the column vector in which the all elements are 1.

We discuss descriptions of a software debugging process, and also discuss the relationship to the

existing models. Now, we consider the absorbing CTMC shown in Figure 1. Actually, Figure 1

depicts the state transition diagram for the debugging situation of existing well-known exponential

software reliability growth model (Musa et al., 1987). In Figure 1, the debugging process consists

of just one process, which is the software failure detection process, denoted by (P1). Further this

model involves the assumption that the fault is immediately and perfectly debugged. From Figure

1, we obtain

𝑨 = (
−𝑧 𝑧
0 0

), (4)

and 𝝅 = (1), respectively. Then, 𝐺𝑃𝐻(𝑡) in Eq. (1) follows the exponential distribution with mean

𝑧 from Eq. (3). Consequently, an exponential model: 𝑀𝑒(𝑡) = 𝜔(1 − exp[−𝑧𝑡]) can be obtained

by following the modeling framework shown in Eq. (1). Further we give another explanation of

our notion in describing debugging process by analyzing a delayed S-shaped model (Yamada,

2014). This model assumes the consecutive failure detection and the fault removal debugging

processes. Based on the assumption, we obtain

 𝑨 = (
−𝑧 𝑧 0
0 −𝑧 𝑧
0 0 0

), (5)

Figure 1. Phase structure for equation (4)

Figure 2. Phase structure for equation (5)

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

79

and 𝝅 = (0 1), respectively. Figure 2 shows the absorbing CMTC representing the debugging

process in the delayed S-shaped software reliability growth model. Following Eq. (3), the phase-

type distribution can be derived. Consequently, we obtain 𝑀𝑑(𝑡) = 𝜔{1 − (1 + 𝑧𝑡)exp [−𝑧𝑡]} as

the mean value function in Eq. (1).

3. Our Models Considering Debugging Process Scenario
We consider several kinds of possible debugging process in practical debugging situation and its

difficulties on the software detection and removal. And we show how to apply the phase-type

modeling scheme for obtaining a useful software reliability model for developing a stochastic

model in software reliability assessment.

Now we consider the case of Figure 3 representing a debugging process. The debugging process in

Figure 3 consists of the following three debugging processes: failure-detection (P1), cause analysis

Figure 3. Phase structure for the software debugging process in Model A

Figure 4. Phase structure for the software debugging process in Model B

(P2), fault removal (P3). From Figure 3, we have

𝑨 = (

−𝑧 𝑧
−𝑧 𝑧

−𝑧 𝑧
), (6)

where the null elements represent 0. We also obtain 𝝅 = (1 0 0). Then, we obtain 𝐺𝑃𝐻(𝑡) for

Figure 3 as

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

80

Consequently, we have

 𝑀1(𝑡) = 𝜔 [1 − {1 + 𝑧𝑥 +
1

2
(𝑧𝑥)2} exp[−𝑧𝑥]], (8)

by Eq. (1). We call Eq. (8) “Model A”.

Considering the difficulties on software fault debugging, we propose another model. This model is

a hybrid of the debugging processes in Figures 2 and 3. Figure 4 shows the phase structure for the

debugging process of this model. In this model, we consider high and low classification in software

debugging procedure. Concretely, software failures classified into the high difficulty and the faults

are detected and removed through the failure detection (P1) and fault removal (P2) with probability

𝑝. On the other hand, the failures classified into the low difficulty are removed immediately by the

fault removal (P3) with probability (1 − 𝑝). From Figure 4, we obtain

 𝑨 = (
−𝑧 𝑝𝑧 (1 − 𝑝)𝑧

−𝑧 𝑧), (9)

where the null elements represent 0. And the initial state vector is obtained as 𝝅 = (0 1). Then,

the mean value function is

𝑀2(𝑡) = 𝜔{1 − (1 + 𝑝𝑧𝑡)exp [−𝑧𝑥]}. (10)

We call Eq. (10) “Model B”.

𝐺𝑃𝐻(𝑡) = 1 − 𝝅 exp [(
−𝑧 𝑧 0
0 −𝑧 𝑧
0 0 −𝑧

) 𝑥] 𝟏

 = 1 − {1 + 𝑧𝑥 +
1

2
(𝑧𝑥)2} exp[−𝑧𝑥].

 (7)

Table 1. Results of goodness-of-fit comparisons

Data Model MSE MLL AIC

D1 Delayed S-shaped 36.650 -68.191 140.38

Model A 99.354 -82.431 168.86

Model B 26.332 -66.326 136.65

D2 Delayed S-shaped 167.77 -94.604 193.21

Model A 288.12 -144.11 292.21

Model B 35.547 -57.219 118.44

D3 Delayed S-shaped 188.75 -109.19 222.38

Model A 394.08 -138.73 281.46

Model B 130.58 -102.20 208.39

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

81

4. Comparisons with Existing Model
We do comparisons of our models and existing delayed S-shaped model (Delayed S-shaped)

(Yamada, 2014), which has been introduced in Section 2, in terms of the MSE, MLL, and AIC

(Yamada, 2014). The MLL means the maximum likelihood. Now we apply the following three

fault count data: D1, D2, and D3 (Inoue and Yamada, 2006). The fault-counting data D1 and DS3

show S-shaped curves and D2 shows an exponential growth curve, respectively.

In Table 1 the best values in terms of each criterion show by using the bold fonts. We can say our

Model B is expected to show better fitting performance to the observed data than other models

from Table 1. From these results, we can see the importance of focusing on the debugging

procedure when we do software reliability modeling. And we can see that the usefulness of the

phase-type modeling scheme in describing several kinds of debugging situations which must be

observed in actual testing activities.

5. Conclusion
We discussed how to apply the phase-type modeling scheme for developing a specific software

reliability model. Concretely, we applied this modeling scheme to describing the uncertainty of the

software debugging procedures. Further, we developed new types of software reliability models

reflecting a possible software debugging procedures with the difficulty in debugging activities. As

we discussed, we can say that the phase-type modeling scheme is expected to yield some other

models in software reliability assessment by describing a lot of kinds of software debugging

procedures and physical meanings in debugging activities. In model comparisons, we recognize the

software debugging process-oriented approach described by the phase-type probability distribution

is expected to obtain more plausible models for software reliability assessment. However, we need

more investigations for making sure the usefulness of modeling approach discussed in this paper.

And we are interested in seeking some other models developed by following this modeling

approach.

Conflict of Interest

The authors declare that there is no conflict of interest in this publication.

Acknowledgement

This research was partially supported by the JSPS KAKENHI (C), Grant No. 19K04144.

References
Buchholz, P., Kriege, J., & Felko, I. (2014). Input modeling with phase-type distributions and Markov

models: theory and applications. Springer, Cham. ISBN 978-3-319-06674-5.

Inoue, S., & Yamada, S. (2006). Discrete software reliability assessment with discretized NHPP model.

Computers & Mathematics with Applications: An International Journal, 51(2), 161-170.

Inoue, S., & Yamada, S. (2007). Generalized discrete software reliability modeling with effect of program

size. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(2), 170-

179.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 1, 76-82, 2020

https://doi.org/10.33889/IJMEMS.2020.5.1.007

82

Inoue, S., & Yamada, S. (2015). Software reliability assessment with multiple changes of testing-

environment. IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, 98(10), 2031-2041.

Langberg, N., & Singpurwalla, N.D. (1985). A unification of some software reliability model. SIAM Journal

on Scientific and Statistical Computing, 6(3), 781-790.

Musa, J.D., Iannino, A., & Okumoto, K. (1987). Software reliability: measurement, prediction, application.

McGrow-Hill, New York.

Okamura, H., & Dohi, T. (2016). Phase type software reliability model: parameter estimation algorithms with

grouped data. Annals of Operations Research, 244(1), 177-208.

Yamada, S. (2014). Software reliability modeling – fundamentals and applications (Vol 5), Springer, Japan,

Tokyo.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

